Strukturbestimmung an einigen Phasen in den Systemen: Zr—Al—Si und Hf—Al—Si {ZrAl₃(Si); ZrSi(Al), Hf(Si, Al); Zr₃Si₂; Hf₃Si₂}

Von

O. Schob, H. Nowotny und F. Benesovsky

Aus dem Institut für physikalische Chemie der Universität Wien und der Metallwerk Plansee A. G., Reutte, Tirol

(Eingegangen am 29. September 1961)

Die ZrAl₃-Struktur wird bestätigt; man findet jedoch in deren Nachbarschaft bei Si-haltigen Legierungen eine weitere Kristallart Zr(Al, Si)₃, welcher der TiAl₃-Typ zukommt. Die Gitterkonstanten dieser Phase sind: a = 5,509, c = 8,990 kX·E. und c/a = 1,632.

Die früher als UII bezeichnete Kristallart im System: Zr-Si wird als ein Monosilicid mit CrB-Typ erkannt und durch Aluminium stabilisiert. Die Abmessungen der Elementarzelle liegen zwischen: a = 3,754 und 3,780; $b = 9,89_2$ und $10,05_0$ bzw. c = 3,746 und 3,78 kX·E., wobei die hohen Werte einer Zusammensetzung $\operatorname{Zr}(\operatorname{Al}_{\sim 0,3}\operatorname{Si}_{\sim 0,7})$ entsprechen. Ähnlich wie bei Ti (Al, Si)₂ führt die Al/Si-Substitution zu einer pseudotetragonalen Symmetrie. Eine analoge, jedoch ternäre Kristallart Hf(Al_{~0.5}Si_{~0.5}) kristallisiert ebenfalls im CrB-Typ mit den Parametern: a = 3,707; $b = 9,87_0$; c = 3,746 kX·E. Im Mittelgebiet: Hf-Si tritt eine sehr stabile Kristallart Hf₃Si₂ mit U_3Si_2 -Struktur auf: a = 6,986; c = 3,664 kX·E. und c/a == 0.5245. Mit Hilfe dieser Kristallart gelingt nunmehr auch der Nachweis der Existenz von Zr₃Si₂ mit U₃Si₂-Typ, was die Angaben von L. Brewer und O. Krikorian bzw. C.H. Dauben bestätigt. Als Gitterkonstanten werden: a = 7,068; c == 3,707 kX \cdot E. und c/a = 0,5245 ermittelt.

Beim Studium der Dreistoffe: Me—Al—Si (Me = Übergangsmetall) konnten weitere Zr- und Hf-haltige Kristallarten gefunden werden, über die nachstehend berichtet wird. Im Laufe der Untersuchungen an derartigen Dreistoffen mit Metallen der 5 a. und 6 a-Gruppe ist der elektronische Einfluß beim Austausch Si/Al insbesondere bei den Disilieiden offenkundig geworden¹. Es war daher anzunehmen, daß sich mit Titan, Zirkonium und Hafnium ähnliche Übergänge im Strukturtyp zeigen werden; außerdem sollte das Verhalten der noch ungeklärten Phasen im System: Zr—Si bei Si/Al-Ersatz betrachtet werden.

Sämtliche Proben waren in folgender Weise hergestellt: Nach Kaltpressen der Pulvermischungen ließen wir die Ansätze bei ca. 1200° C unter Argon abreagieren. Diese Produkte wurden sodann gepulvert und nochmals kaltgepreßt. Die Homogenisierung erfolgte schließlich während 4—12 Stdn. bei 1200° C (Argon).

Die Zweistoffe: Zr-Al und Hf-Al zählen zu jenen Paaren, welche eine sehr große Zahl von intermediären Phasen aufweisen². Von einer erheblichen Anzahl derselben ist auch die Struktur gesichert³. Eine diesbezügliche Aufklärung der Zr- und Hf-Silicide ist noch nicht so weit fortgeschritten.

ZrAl₃(Si). Für die Al-reichste Kristallart HfAl₃ konnten kürzlich sowohl der TiAl₃-Typ (D 0 22) wie die ZrAl₃-Struktur (D 0 23) beobachtet werden. Proben gemäß Ansatz von ZrAl₃ waren einphasig und zeigten röntgenographisch den charakteristischen ZrAl₃-Typ, wobei die Gitterparameter: a = 4,01 und c = 17,27 kX·E. in guter Übereinstimmung mit den Literaturwerten stehen⁴. Im Dreistoff: Zr-Al-Si traten nun bemerkenswerterweise, insbesondere am Schnitt: ZrAl₃ - ZrSi, zwei neue Kristallarten auf, wovon sich die erste Al-reich und mit der TiAl₃-Struktur isotyp erwies. In Tab. 1 ist die Auswertung des Pulverdiagrammes einer heterogenen Legierung mit 33,3 At% Zr, 45 At% Al und 21,7 At% Si für diese Al-reiche Phase wiedergegeben. Man erkennt daraus die vorzügliche Übereinstimmung hinsichtlich der Intensitäten, obwohl zum Vergleich nur jene des isotypen HfAl₃ herangezogen wurden. Demnach stabilisiert teilweiser Austausch von Al durch Si auch bei Zirkonium die zweite Form. Die Gitterkonstanten für $Zr(Al, Si)_3$ sind: a = 5,509(bzw. 3,892); c = 8,990 kX · E. und c/a = 1,632 (bzw. 2,306). Die genaue Zusammensetzung steht noch nicht fest — möglicherweise ist auch das Verhältnis Zr/Al + Si von $\frac{1}{3}$ etwas verschieden — doch genügen offensichtlich geringe Si-Mengen zur Aufrichtung des D022-Typs. Unter

⁴ G. Brauer, Z. anorg. allg. Chem. 242, 1 (1939).

Monatshefte für Chemie, Bd. 92/6

¹ Vgl. etwa C. Brukl, H. Nowotny, O. Schob und F. Benesovsky, Mh. Chem. **92**, 781 (1961).

² H. Nowotny, Aluminium 37, 580 (1961).

³ H. Boller, H. Nowotny und A. Wittmann, Mh. Chem. **91**, 1174 (1960); **92**, 330 (1961). L. E. Edshammar, Acta Chem. Scand. **14**, 1220, 2244 (1960); L. E. Edshammar und St. Anderson, Acta Chem. Scand. **14**, 223 (1960). K. Schubert u. Mitarbeiter, Naturwissensch. **47**, 512 (1960).

Annahme einer reinen Al/Si-Substitution für 25 At% Zr ergibt sich bei Berücksichtigung des um etwa 1,5% kleineren Zellvolumens eine Formel gemäß Zr(Al_{~0,9}Si_{~0,1})₃. Unter den gewählten Bedingungen ist der Schnitt: Zr(Al_{~0,9}Si_{~0,1})₃—ZrSi(Al) stabil gegenüber ZrAl₂ (C 14-Typ) und ZrSi₂.

Tabelle 1. Auswei	rtung*	einer F	'ulveraufnah	me	von	Legierung
Zr-Si-Al	(33, 3/2)	1,7/45);	TiAl ₃ -Typ;	$\mathbf{Cr}\mathbf{K}$	x-Stra	ıhlung

(hkl)	$10^3 \cdot \sin^2 \theta$ berechnet	$10^3 \cdot \sin^2 \theta$ beobachtet	Intensität geschätzt	Intensität berechnet für HfAl ₂
(002)	64,6	64,7	s	25,4 _{Vaine}
(111)	102,1	102,2	m	59,8 ZuSi(CuP Press)
(200)	172,0	172,9	SS	14.7 $2rsi(CrB-1yp)$
(113)	231,3	231,8	SSS	19,2
(202)	236,6	237,7	sst	56,8
(004)	258,4	258,8	sm	10,8
(220)	344,0	343,8	\mathbf{mst}	16,3
(222)	408,6	408,2	s	7,4
(204)	430,4	430,6	ss	6,9
(311)	446,1	446,3	sm	13,8
(115)	489,7	489,8	s	6,0
(313)	575,3	575,5	sm	11,8
(006)	581,4			1,5
(224)	602, 4	602,1	\mathbf{mst}	18,2
(400)	688.0	688,0	m	9,0
(402)	752,61	^		6,0
(206)	753,4	754,0	st	19,9
(331)	790,1	789,9	sss-d	6,8
(315)	833,7	833,7	$\operatorname{sm-d}$	15,7
(420)	860,0	859,6	ss-d	7,8
(117)	877,3	877,3	s-d	11,1
(333)	919,3)			(11,1
(422)	924.6	920, 3 - 926, 0	$\operatorname{sst-d}$	63,6
(226)	925.4			14,4 Trains
(404)	946, 4	947,2	sst-d	41,2 ZrSi/CrB-Tur)
• •				anon(or p, ryb)

* Ohne Linien von "ZrSi" (CrB-Typ).

Die UII-Phase. Für das Mittelgebiet des Systems: Zr—Si konnte bis jetzt keine befriedigende Lösung gegeben werden. Neben den durch C. E. Lundin, D. J. McPherson und M. Hansen⁵ beobachteten Phasen:Zr₃Si₂, Zr₄Si₃, Zr₆Si₅ wurde noch die Kristallart: Zr₅Si₃(X) nachgewiesen,die jedoch in sehr reinen, binären Proben nicht erfaßt werdenkonnte. Diese Phase wird durch geringe Mengen kleiner Nichtmetalle(B, C, N, O) außerordentlich leicht stabilisiert. Einer nächst ZrSi fol-

⁵ C. E. Lundin, D. J. McPherson und M. Hansen, Amer. Soc. Met., Reprint Nr. 41 (1952).

genden, etwas Zr-reicheren Phase wurde die ungefähre Zusammensetzung Zr₆Si₅ zugeordnet und mit U II bezeichnet⁶. Die Proben mit bevorzugten Mengen an U II waren jedoch nie völlig homogen, was auch die Indizierung des Röntgenogramms vereitelte, obgleich dieses keinen allzu komplizierten Charakter besitzt. Aus der neuen Legierung, insbesondere Al-haltigen Proben in der Umgebung von 50—55 At% Zr ergab sich nun eindeutig daß die U II-Phase einem Monosilicid mit CrB-Struktur

Al-haltigen Proben in der Umgebung von 50-55 At% Zr ergab sich nun eindeutig, daß die UII-Phase einem Monosilicid mit CrB-Struktur entspricht, welche durch Aufnahme von Aluminium stabilisiert wird. Eine Legierung mit 50 At% Zr, 40 At% Si und 10 At% Al ist praktisch homogen und weist ein sehr gut durchgebildetes Debyeogramm auf, das in Tab. 2 ausgewertet ist. Die Isotypie mit dem gleichstreuenden YSi⁷ ist unverkennbar. Demnach zeichnet sich bei den Monosiliciden eine ähnliche Regelmäßigkeit ab wie bei den Disiliciden. Während die Monosilicide der 2 a- und 3 a-Gruppe bzw. der Lanthaniden und Actiniden im CrB-Typ kristallisieren, gehören die Monosilicide von Ti, Zr und Hf zum FeB-Typ. Eine Erniedrigung der Gesamtelektronenkonzentration durch Si/Al-Austausch gemäß Zr(Si,Al) erhöht dementsprechend die Stabilität des CrB-Typs. Das Diagramm von Zr-Si-Proben mit 55 At% Zr (Al-frei, aber nicht völlig sauerstofffrei) ließ sich glatt als ZrSi mit CrB-Typ und Zr₅Si₃(X) mit D 8₈-Typ indizieren. Auch in Proben (neu bzw. seinerzeit hergestellt) mit 56,5 und 58 At% Zr können in der Hauptsache diese beiden Phasen nachgewiesen werden. Es ist bemerkenswert, daß der FeB-Typ von ZrSi stets nur in Proben mit Gehalten kleiner als 50 At% Zr auftritt, während der CrB-Typ bei Legierungen mit Zr-Gehalten größer als 50 At% vorgefunden wird.

Die Gitterkonstanten für ZrSi mit CrB-Typ bzw. für Zr(Si, Al) sind: $a = 3,75_4 - 3,78_0$; $b = 9,89_2 - 10,05_0$ und $c = 3,74_6 - 3,78$ kX·E. Ähnlich wie im Falle von Ti (Al, Si)₂ mit ZrSi₂-Typ wird auch hier die Zelle durch Si/Al-Austausch pseudotetragonal. Diese Erscheinung ist sicher nicht ganz zufällig, da die Bauprinzipien der CrB- und ZrSi₂-Struktur eng verwandt sind. Das Zellvolumen von ZrSi mit CrB-Typ ist mit 139,4 (kX·E.)³ genau gleich groß wie jenes von ZrSi mit FeB-Typ.

Eine analoge Phase Hf (Si, Al) mit CrB-Typ konnte auch im Dreistoff: Hf—Al—Si beobachtet werden. In einer Legierung mit 50 At% Hf, 35 At% Si und 15 At% Al tritt diese Struktur einerseits mit Hf₃Si₂, in einer Probe mit 43 At% Hf, 29 At% Si und 28 At% Al ziemlich homogen auf. Die Auswertung einer Pulveraufnahme von Hf (Al_{~0,5}Si_{~0,5}) geht aus Tab. 3 hervor. Die Intensitäten stimmen weitgehend mit jenen von ZrSi (CrB-Typ) überein. In unmittelbarer Nähe des Zweistoffes ist HfSi mit FeB-Typ stabil, was im Gegensatz zum Zr-System auch bei

⁶ H. Schachner, H. Nowotny und R. Machenschalk, Mh. Chem. 84, 677 (1953); H. Nowotny, B. Lux uud H. Kudielka, Mh. Chem. 87, 447 (1956). ⁷ E. Parthé, Acta Cryst. 12, 559 (1959).

(hkl)	$\sin^2 \theta \cdot 10^3$ berechnet	$\sin^2 \theta \cdot 10^3$ beobachtet	Intensität geschätzt	Intensität berechnet
(020)	52,5			0,24
(110)	105,1	106,6	S	19,2
(021)	144,5	146,0	\mathbf{sm}	68,5
(111)	197,1	198,4	\mathbf{st}	124
(130)	210,2)	011.0		175,5
(040)	210,1)	211,2	\mathbf{mst}	124,2
(131)	302,21	909.0		(33,2
(041)	302,1)	303,0	m	25,2
(200)	368,01	960 7		124,2
(002)	368,01	308,7	111	24,2
(220)	420,5			0,02
(150)	420,3			$\{ 0,02 \}$
(022)	420,5)			1 0,02
(060)	472,7	172 6	00	∫ 2,5 4
(112)	473,1(473,0	88	3,89
(151)	512,3	512 1	m^+	ſ16,6
(221)	512,51	010,1	111	19,5
(061)	564,7	564,8	S	14,4
(240)	578,1)			11,3
(042)	578,1	577,9	\mathbf{mst}	${11,3}$
(132)	578,2)			135,7
(241)	670, 1	669,7	\mathbf{s}^+	22,2
(202)	736,0	735 7	mst	129,9
(170)	735,40	100,1	11150	(27,7)
(222)	788,5			∫ 0,02
(152)	788,3)			0,02
(171)	827,4			2,69
(080)	840,3			0,31
(310)	841,1	840.6	s-d) 1,98
(260)	840,7	0.10,0		5,46
(062)	840,7)			(5,46
(023)	880,5	880,1	s+-d	13,4
(311)	933,1			55,4
(113)	933,1	933.3	ssst-d	100,4
(261)	932,71	2		00,3
(081)	932,31			122,9
(330)	946,2	946,3	$\operatorname{sst-d}$	42,4
(242)	946,1)	,-		198,7

Tabelle 2. Auswertung einer Pulveraufnahme von Legierung Zr-Si-Al (50/40/10); "ZrSi" mit CrB-Typ; CrK α -Strahlung

Hf-reicheren Proben, z. B. 58 At% Hf, 37 At% Si und 5 At% Al, der Fall ist. Die Kristallart mit CrB-Typ ist an die Gegenwart von Aluminium gebunden. Die Gitterparameter mit: a = 3,707, b = 9,870 und c == 3,746 kX·E. führen auf ein Zellvolumen von 137,2 (kX·E.)³, das wegen des erheblichen Austausches Si/Al gemäß Hf (Si~0,5Al~0,5) merklich größer als jenes von HfSi (FeB-Typ) ist. Ein Übergang von

1222

H. 6/1961]

(hkl)	$10^3 \cdot \sin^2 \theta$ berechnet	$10^3 \cdot \sin^2 \theta$ beobachtet	Intensität geschätzt
(020)	53,6		
(110)	108,4	108,8	s
(021)	146,6	147,8	m
(111)	201,4	201,5	\mathbf{st}
(040)	214,4)	9150	
(130)	215,6	210,0	mst
(041)	307,4	207 7	700
(131)	308,6Ĵ	307,7	111
(002)	372,0	372,3	sm
(200)	380,0	380,9	sm
(022)	425,6		—
(150)	430,0	—	
(220)	433,6		
(112)	480,4	481 1	e+
(060)	482,41	101,1	6
(151)	523,0)	521 4-528 4	est.d
(221)	526,61	<i>owi,i 020,i</i>	000 a
(061)	575,4	575,5	s
(042)	586,4	587.5	st
(132)	587,61		1
(240)	594,4	593,7	s-a
(241)	687,4	686,5	sm-d
(170)	751,6	749.5 - 752.5	sst-d
(202) (159)	752,0j	, ,	
(102)	802,0		
(222) (171)	809,0 844 G		
(171)	044,0		
(080)	854 4	059 5	
(260)	869 1	869 0	ssss-a
(310)	868 4	302,0	5555-U
(023)	800,± 800.6	800.8	erro d
(113)	945 4	944 7	et_d
(081)	950.6	951.0	50-u
(261)	955.4	956.8	sm
(311)	961.41	961.7-966.3	mst-d
(242)	966.4		LLOU A
(330)	975,6	972,7	ss-d

Tabelle 3. Auswertung einer Pulveraufnahme von Legierung Hf-Si-Al (43/29/28) Hf(Si,Al) mit CrB-Typ, CrK α -Strahlung

 $\rm Hf(Si_{\sim 0,5}Al_{\sim 0,5})$ zur Phase HfAl (CrB-ähnlich) konnte bisher nicht beobachtet werden.

Auf die Ähnlichkeit im Aufbau zwischen dem Zr-Si und Hf-Si wurde bereits früher aufmerksam gemacht⁸. Das typische CrB-Muster

⁸ H. Nowotny, E. Laube, R. Kieffer und F. Benesovsky, Mh. Chem. 89, 701 (1958).

(hkl)	$10^3 \cdot \sin^2 \theta$ berechnet	$10^3 \cdot \sin^2 \theta$ beobachtet	Intensität geschätzt	Intensität berechnet für V ₃ B ₂
(110)	53.5	54.7	888	2.6
(001)	97.3	97.3	s	1.4
(200)	107.1			0.2
(210)	133.8	135.3	mst	11.6
(111)	150.8	151.3	mst	8.6
(201)	204.4	204.8	sst	21.3
(201)	214 1	215.0	sm	4.8
(220)	231 1	210,0	set.	13.8
(211)	267 7	268 1	st	74
(991)	201,1	311.3	deeee de	
(221)	348.0	348.4	aaaa d	0.6
(320)	365.0	365 0	assa-u.	0,0
(009)	200,0	200,0	5555-U	4.0
(002)	109,2 198 9	309,0	111	4,0
(400)	420,0			0,1
(112)	442,7			0,2
(321)	440,0	454 9		4.0
(410)	400,0	404,0	mst	4,9
(330)	481,8	481,9	SS	0,0
(202)	490,3	496,0	$ssss-\alpha$	 (]]]
(212)	523,0	522,5	mst-d	1 4,4
(401)	525,6	527,6J		2,0
(420)	535,3	535,6	m	2,4
(411)	552,3	552,0	\mathbf{st}	10,4
(331)	579,1	579,0	st^+	15,7
(222)	603,3	603,3	\mathbf{mst}	7,3
(421)	632, 6	632,4	S	2,9
(312)	656,9	656,7	sst	32,4
(430)	669,2			*)
(510)	695,9	696,1	ssss-d	
(322)	737,2	737,1	ss-d	
(431)	766,5		And Advanta	
(520)	776,2	776,4	s	
(511)	793,2	793,1	sst	
(402)	817,5			
(412)	844,2	843, 6	sst	
(440)	856,5	856,1	s-d	
(332)	871,0			
(521)	873,5	874, 1	$\operatorname{sst-d}$	
(003)	875,71	k		
(530)	910,1	910,0	$\operatorname{sst-d}$	
(422)	924,5	923,5	\mathbf{sst}	
(113)	929,2			
(441)	953,8	953,7	sm-d	
(600)	963,6	963,4	sst	
(203)	982,8	<u> </u>	,	
(610)	990,4			

Tabelle 4. Auswertung einer Pulveraufnahme von Legierung Hf-Si (40 At%Si); Hf_3Si_2 mit U_3Si_2-Typ; CrK\alpha-Strahlung

* Nicht mehr berechnet.

(hkl)	10 ³ . sin ² [€] berechnet	10 ³ · sin ^s t beobachtet	Intensität geschätzt
(110)	52.3		
(001)	95.0		· · · · ·
(200)	104.5		
(210)	130.7	131.8	s
(111)	147.3	147.6	s Koinz, ZrSi (CrB)
(201)	199.5	200.5	st
(220)	209.0	210.5	s-d
(211)	225.7	227.1	st
(310)	261.3	261.7	m-d
(221)	304.0		
(320)	339.7		
(311)	356.3	~	
(002)	380.0	379.8	s
(400)	418.1		
(112)	432.3		
(321)	434.7	~~~~	
(410)	444.2	445.3	sm
(330)	470.3	470.0	ssss-d
(202)	484.5		
(212)	510.71		
(401)	513.1	512,0	sss-d
(420)	522.6	522.4	sss-d
(411)	539.2	539.8	sm Koinz, ZroSi (C 16)
(331)	565.3	565.9	sm
(222)	589.0	588.3	sm
(421)	617.6	617.6	sm Koinz, Zr5Si2 (D 82)
(312)	641.3	641.4	m
(430)	653.3		
(510)	679,4	681.1	ss Koinz, ZrSi (CrB)
(322)	719,7		<u> </u>
(431)	748,3	747.6	sss-d
(520)	757,8	758,0	SSS
(511)	774.4	775.8	m-d Koinz, Zr ₅ Si ₃ (D S ₈)
(402)	798,1		
(412)	824,2	824,1	m
(440)	836,2	836,5	ssss-d
(332)	850,31	,	
(521)	852.8	853,1	$\operatorname{sm-d}$
(003)	855,0		
(530)	888,4	888,3	sm-d
(422)	902, 6	902,4	sm-d Koinz. Zr ₅ Si ₃ (D 88)
(113)	907,3		
(441)	931,2	931,2	$\operatorname{st-d}$
(600)	940,7	940,6	sm ⁺ -d Koinz. ZrSi (CrB)
(203)	959,5		
(610)	966,8		
(531)	983,4	982, 6	m-d
(213)	985,7		

Tabelle 5. Auswertung einer Legierung Zr-Si, 40 At% Si, Zr_3Si_2 mit U_3Si_2-Typ; CrK α -Strahlung

wird in binären Legierungen mit 53, 55 und 57 At% Hf nicht beobachtet, es besteht vielmehr eine UI-ähnliche Kristallart in diesem Bereich neben HfSi mit FeB-Typ, bzw. werden geringe Mengen an Hf₅Si₃(X) mit D 8₈-Struktur gefunden. Bei 60 At% Hf, 40 At% Si konnte indessen die Existenz einer sehr stabilen Phase festgestellt werden, deren gut ausgebildetes Röntgenogramm einwandfrei Isotvpie mit der U₃Si₂-Struktur erkennen ließ. Die Auswertung ist in Tab. 4 gegeben, in welcher zum Beweis die Übereinstimmung mit der Intensitätsfolge des etwa gleich streuenden V_3B_2 angeführt ist. Es hat sich in der Folge gezeigt, daß sich das Linienmuster des U₃Si₂-Typs gelegentlich in manchen Röntgenogrammen von Zr-Si-Legierungen des analogen Gebietes vorfindet. Mit Hilfe des Hf₃Si₂-Diagramms konnte daher eine zweifelsfreie Auswertung der Zr₃Si₂-Phase durchgeführt werden (Tab. 5). Die Intensitätsfolge ist jener von Hf₃Si₂ bzw. V₃B₂ ganz ähnlich. Damit wird der Befund von C. H. Dauben⁹ voll bestätigt. Zr₃Si₂ mit U₃Si₂-Typ ist zwar in der Literatur erwähnt, jedoch sind keine näheren Daten bekanntgegeben worden. Eine Indizierung entsprechend einem U₃Si₂-Typ wurde bereits früher versucht, konnte aber nicht befriedigen, weil eine große Zahl von Linien, mindestens eine weitere unbekannte Phase, ungeklärt blieb⁸.

Die Gitterkonstanten für die beiden isotypen Phasen sind:

Zr₃Si₂: a = 7,068; c = 3,707 kX.E., $c/a = 0,524_5$ Hf₃Si₂: a = 6,986; c = 3,664 kX.E., c/a = 0,5245

Über die Dreistoffsysteme: Ti(Zr, Hf)-Al-Si erfolgt eine ausführliche Mitteilung.

Diese Arbeit wurde durch das US-Government, Contract No 91.591 EUC-1487 unterstützt.

⁹ C. H. Dauben, J. Electrochem. Soc. 104, 521 (1957).